Indications for Digital Monitoring of Patients With Multiple Nevi: Recommendations from the International Dermoscopy Society
Keywords:
dermoscopy, dermatoscopy, digital monitoring, multiple nevi , total body photographyAbstract
Introduction: In patients with multiple nevi, sequential imaging using total body skin photography (TBSP) coupled with digital dermoscopy (DD) documentation reduces unnecessary excisions and improves the early detection of melanoma. Correct patient selection is essential for optimizing the efficacy of this diagnostic approach.
Objectives: The purpose of the study was to identify, via expert consensus, the best indications for TBSP and DD follow-up.
Methods: This study was performed on behalf of the International Dermoscopy Society (IDS). We attained consensus by using an e-Delphi methodology. The panel of participants included international experts in dermoscopy. In each Delphi round, experts were asked to select from a list of indications for TBSP and DD.
Results: Expert consensus was attained after 3 rounds of Delphi. Participants considered a total nevus count of 60 or more nevi or the presence of a CDKN2A mutation sufficient to refer the patient for digital monitoring. Patients with more than 40 nevi were only considered an indication in case of personal history of melanoma or red hair and/or a MC1R mutation or history of organ transplantation.
Conclusions: Our recommendations support clinicians in choosing appropriate follow-up regimens for patients with multiple nevi and in applying the time-consuming procedure of sequential imaging more efficiently. Further studies and real-life data are needed to confirm the usefulness of this list of indications in clinical practice.
References
Vestergaard ME, Macaskill P, Holt PE, Menzies SW: Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies per- formed in a clinical setting. Br J Dermatol 2008; 159:669–676.
Brancaccio G, Russo T, Lallas A, Moscarella E, Agozzino M, Argenziano G. Melanoma: clinical and dermoscopic diagnosis. G Ital Dermatol Venereol. 2017;152(3):213-223.
Guitera P, Menzies SW, Coates E, et al. Efficiency of Detecting New Primary Melanoma Among Individuals Treated in a High-risk Clinic for Skin Surveillance. JAMA Dermatol. 2021;157(5):521–530.
Moscarella E, Tion I, Zalaudek I, Lallas A, Kyrgidis A, Longo C, Lombardi M,Raucci M, Satta R, Alfano R, Argenziano G. Both short-term and long-term dermoscopy monitoring is useful in detecting melanoma in patients with multiple atypical nevi. J Eur Acad Dermatol Venereol. 2017;31(2):247-251.
Chen ST, Geller AC, Tsao H. Update on the Epidemiology of Melanoma. Curr Dermatol Rep. 2013;2(1):24-34.
Haenssle HA, Korpas B, Hansen-Hagge C, Buhl T, Kaune KM, Johnsen S, Rosenberger A, Schön MP, Emmert S. Selection of patients for long-term surveillance with digital dermoscopy by assessment of melanoma risk factors. Arch Dermatol. 2010;146(3):257-64.
Haenssle HA, Mograby N, Ngassa A, Buhl T, Emmert S, Schön MP, Rosenberger A,Bertsch HP. Association of Patient Risk Factors and Frequency of Nevus-Associated Cutaneous Melanomas. JAMA Dermatol. 2016;152(3):291-8.
Lallas A, Longo C, Moscarella E, Lombardi M, Specchio F, Raucci M, Zalaudek I, Argenziano G. Reasons for excision of skin tumors: a one-year prospective study in a tertiary skin cancer unit. Dermatology. 2015;230(4):340-6.
Tschandl P, Hofmann L, Fink C, Kittler H, Haenssle HA. Melanomas vs. nevi in high-risk patients under long-term monitoring with digital dermatoscopy: do melanomas and nevi already differ at baseline? J Eur Acad Dermatol Venereol. 2017 Jun;31(6):972-977.
Longo C, Barquet V, Hernandez E, Marghoob AA, Potrony M, Carrera C, Aguilera P, Badenas C, Malvehy J, Puig S. Dermoscopy comparative approach for early diagnosis in familial melanoma: influence of MC1R genotype. J Eur Acad Dermatol Venereol. 2021 Feb;35(2):403-410.
Fergal J. Moloney et al. Detection of primary melanoma in individuals at extreme high risk: a prospective five-year follow-up study. JAMA Dermatol 2014;150(8):819-27
Caroline G Watts et al. Specialized surveillance for individuals at high risk of melanoma: a cost analysis of a High Risk Clinic. JAMA Dermatol. 2015;151(2):178-86
Watts CG, et al. Cost-effectiveness of skin surveillance through a specialised clinic for patients at high risk of melanoma. Journal Clinical Oncology 2017; 35:63-71
Guitera P et al. Efficiency of detecting new primary melanoma among individuals treated in a high-risk clinic for skin surveillance: a multi-center prospective cohort study. JAMA Dermatol. 2021;157:521-530.
Hasson F, Keeney S, McKenna H. Research guidelines for the Delphi survey technique. J Adv Nurs. 2000 Oct;32(4):1008-15.
Burns PB, Rohrich RJ, Chung KC. The levels of evidence and their role in evidence-based medicine. Plast Reconstr Surg. 2011 Jul;128(1):305-310.
Bishop DT, Demenais F, Goldstein AM, et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. Journal of the National Cancer Institute. 2002;94(12):894-903. 4.
McWilliams RR, Wieben ED, Rabe KG, et al. Prevalence of CDKN2A mutations in pancreatic cancer patients: implications for genetic counseling. European journal of human genetics : EJHG. 2011;19(4):472-478. 5.
Begg CB, Orlow I, Hummer AJ, et al. Lifetime risk of melanoma in CDKN2A mutation carriers in a population-based sample. Journal of the National Cancer Institute. 2005;97(20):1507-1515.
Bishop JA, Wachsmuth RC, Harland M, et al. Genotype/phenotype and penetrance studies in melanoma families with germline CDKN2A mutations. J Invest Dermatol. 2000;114(1):28-33.
Boffetta P. Causation in the presence of weak association. Critical reviews in food science and nutrition 51, supp. 1: 13-16.
Jovancic, Nemanja. "Likert Scale: How to Create Your Own Survey". LeadQuizzes. Retrieved 9 March 2020
Watts CG, Dieng M, Morton RL, Mann GJ, Menzies SW, Cust AE. Clinical practice guidelines for identification, screening and follow-up of individuals at high risk of primary cutaneous melanoma: a systematic review. Br J Dermatol. 2015 Jan;172(1):33-47.
Gandini S, Sera F, Cattaruzza MS, et al. Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur J Cancer. 2005; 41:28–44.
Gandini S, Sera F, Cattaruzza MS, et al. Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur J Cancer. 2005; 41:2040–2059.
Chen T, Fallah M, Försti A, Kharazmi E, Sundquist K, Hemminki K. Risk of Next Melanoma in Patients with Familial and Sporadic Melanoma by Number of Previous Melanomas. JAMA Dermatol. 2015;151(6):607-15.
Lallas A, Apalla Z, Kyrgidis A, Papageorgiou C, Boukovinas I, Bobos M, Efthimiopoulos G, Nikolaidou C, Moutsoudis A, Gkentsidi T, Lallas K, Lazaridou E, Sotiriou E, Vakirlis E, Ioannides D. Second primary melanomas in a cohort of 977 melanoma patients within the first 5 years of monitoring. J Am Acad Dermatol. 2020 Feb;82(2):398-406.
Wheless L, Black J, Alberg AJ. Nonmelanoma skin cancer and the risk of second primary cancers: a systematic review. Cancer Epidemiol Biomarkers Prev. 2010; 19:1686–1695.
Duffy DL, Lee KJ, Jagirdar K, Pflugfelder A, Stark MS, McMeniman EK, Soyer HP, Sturm RA. High nevus count and MC1R red hair alleles contribute synergistically to increased melanoma risk. Br J Dermatol. 2019 Nov;181(5):1009-1016
Raimondi S, Sera F, Gandini S, et al. MC1R variants, melanoma and red hair color phenotype: a meta-analysis. Int J Cancer. 2008; 122:2753–2760.
Williams PF, Olsen CM, Hayward NK, Whiteman DC. Melanocortin 1 receptor and risk of cutaneous melanoma: a meta-analysis and estimates of population burden. Int J Cancer. 2011; 129:1730–1740.
Gandini S, Sera F, Cattaruzza MS, et al. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer. 2005; 41:45–60.
Han J, Colditz GA, Hunter DJ. Risk factors for skin cancers: a nested case-control study within the Nurses’ Health Study. Int J Epidemiol. 2006; 35:1514–1521.
Brewer JD, Christenson LJ, Weaver AL, et al. Malignant melanoma in solid transplant recipients: collection of database cases and comparison with surveillance, epidemiology, and end results data for outcome analysis. Arch Dermatol. 2011; 147:790–796.
Engels EA, Pfeiffer RM, Fraumeni JF Jr. et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA. 2011; 306:1891–1901.
Lang UE, Yeh I, McCalmont TH. Molecular Melanoma Diagnosis Update: Gene Fusion, Genomic Hybridization, and Massively Parallel Short-Read Sequencing. Clin Lab Med. 2017 Sep;37(3):473-484.
Guo L, Qi J, Wang H, Jiang X, Liu Y. Getting under the skin: The role of CDK4/6 in melanomas. Eur J Med Chem. 2020 Oct 15;204:112531. doi: 10.1016/j.ejmech.2020.112531. Epub 2020 Jul 14. PMID: 32712436.
Hartman ML, Czyz M. MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci. 2015 Apr;72(7):1249-60. doi: 10.1007/s00018-014-1791-0. Epub 2014 Nov 30. PMID: 25433395; PMCID: PMC4363485.
Read J, Wadt KA, Hayward NK. Melanoma genetics. J Med Genet. 2016 Jan;53(1):1-14. doi: 10.1136/jmedgenet-2015-103150. Epub 2015 Sep 3. PMID: 26337759.
Published
Issue
Section
License
Copyright (c) 2022 Teresa Russo, Vincenzo Piccolo, Elvira Moscarella, Philipp Tschandl, Harald Kittler, John Paoli, Aimilios Lallas, Ralph P Braun, Luc Thomas, H Peter Soyer, Josep Malvehy, Susana Puig, Ashfaq Marghoob, Alon Scope, Andreas Blum, Allan C Halpern, Horacio Cabo, Scott Menzies, Wilhem Stolz, Masaru Tanaka, Harold Rabinovitz, Rainer hofmann-wellenhof, Renato Marchiori Bakos, Iris Zalaudek, Giovanni Pellacani, Anna Varela Veiga, Laura Rosende Maceiras, Cristina de las Heras-Sotos, Giuseppe Argenziano
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Dermatology Practical & Conceptual applies a Creative Commons Attribution License (CCAL) to all works we publish (http://creativecommons.org/licenses/by-nc/4.0/). Authors retain the copyright for their published work.