Smart E-Skin Cancer Care in Europe During and After the COVID-19 Pandemic: A Multidisciplinary Expert Consensus
Keywords:
artificial intelligence, COVID-19, e-Health, melanoma, skin cancerAbstract
Introduction: Melanoma is the deadliest of all the skin cancers and its incidence is increasing every year in Europe. Patients with melanoma often present late to the specialist and treatment is delayed for many reasons (delay in patient consultation, misdiagnosis by general practitioners, and/or limited access to dermatologists). Beyond this, there are significant inequalities in skin cancer between population groups within the same country and between countries across Europe. The emergence of the COVID-19 pandemic only aggravated these health deficiencies.
Objectives: The aim was to create an expert opinion about the challenges in skin cancer management in Europe during the post COVID-19 acute pandemic and to identify and discuss the implementation of new technologies (including e-health and artificial intelligence defined as "Smart Skin Cancer Care") to overcome them.
Methods: For this purpose, an ad-hoc questionnaire with items addressing topics of skin cancer care was developed, answered independently and discussed by a multidisciplinary European panel of experts comprising dermatologists, dermato-oncologists, patient advocacy representatives, digital health technology experts, and health technology assessment experts.
Results: After all panel of experts discussions, a multidisciplinary expert opinion was created.
Conclusions: As a conclusion, the access to dermatologists is difficult and will be aggravated in the near future. This fact, together with important differences in Skin Cancer Care in Europe, suggest the need of a new approach to skin health, prevention and disease management paradigm (focused on integration of new technologies) to minimize the impact of skin cancer and to ensure optimal quality and equity.
References
Fitzmaurice C, Abate D, Abbasi N, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017. JAMA Oncol. 2019;5(12):1749-1768. DOI:10.1001/jamaoncol.2019.2996. PMID: 31560378. PMCID: PMC6777271.
Krensel M, Schäfer I, Augustin M. Cost-of-illness of melanoma in Europe – a systematic review of the published literature. J Eur Acad Dermatol Venereol. 2019;33(3):504-510. DOI:10.1111/jdv.15315. PMID: 30408246.
Buja A, Sartor G, Scioni M, et al. Estimation of direct melanoma-related costs by disease stage and by phase of diagnosis and treatment according to clinical guidelines. Acta Derm Venereol. 2018;98(2):218-224. DOI:10.2340/00015555-2830. PMID: 29110018.
Sheldon TA, Smith PC. Equity in the allocation of health care resources. Health Econ. 2000;9(7):571-574. DOI:10.1002/1099-1050(200010)9:7<571::AID-HEC555>3.0.CO;2-8. PMID: 11103921.
World Health Organization. Equity in health project. Accessed from: https://www.euro.who.int/en/data-and-evidence/equity-in-health-project 22/Nov/2021
Lundberg O. The next step towards more equity in health in Sweden: how can we close the gap in a generation? Scand J Public Health. 2018;46(22_suppl):19-27. DOI:10.1177/1403494818765702. PMID: 29862904.
Forsea AM, Del Marmol V, Stratigos A, Geller AC. Melanoma prognosis in Europe: Far from equal. Br J Dermatol. 2014;171(1):179-182. DOI:10.1111/bjd.12923. PMID: 24588115.
Barbaric J, Sekerija M, Agius D, et al. Disparities in melanoma incidence and mortality in South-Eastern Europe: Increasing incidence and divergent mortality patterns. Is progress around the corner? Eur J Cancer. 2016;55:47-55. DOI:10.1016/j.ejca.2015.11.019. PMID: 26773419.
Kandolf Sekulovic L, Guo J, Agarwala S, et al. Access to innovative medicines for metastatic melanoma worldwide: Melanoma World Society and European Association of Dermato-oncology survey in 34 countries. Eur J Cancer. 2018;104:201-209. DOI:10.1016/j.ejca.2018.09.013. PMID: 30388700.
EuroHealthNet. Health inequalities in Europe. https://eurohealthnet.eu/wp-content/uploads/documents/2019/191023_Factsheet_HealthEquityEU_WebLayout.pdf
Dessinioti C, Garbe C, Stratigos AJ. The impact of the COVID-19 pandemic on diagnostic delay of skin cancer: a call to restart screening activities. J Eur Acad Dermatol Venereol. 2021;35(12):e836-e837. DOI:10.1111/jdv.17552. PMID: 34309963. PMCID: PMC8447214.
. Li AR, Valdebran M, Reuben DY. Emerging Developments in Management of Melanoma During the COVID-19 Era. Front Med (Lausanne). 2021;8:769368. DOI: 10.3389/fmed.2021.769368. PMID: 34820401. PMCID: PMC8606631.
R Niakan Kalhori S, Bahaadinbeigy K, Deldar K, Gholamzadeh M, Hajesmaeel-Gohari S, Ayyoubzadeh SM. Digital Health Solutions to Control the COVID-19 Pandemic in Countries With High Disease Prevalence: Literature Review. J Med Internet Res. 2021;23(3):e19473. DOI:10.2196/19473. PMID: 33600344. PMCID: PMC7951053.
Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447-453. DOI:10.1126/science.aax2342. PMID: 31649194.
Young AT, Xiong M, Pfau J, Keiser MJ, Wei ML. Artificial Intelligence in Dermatology: A Primer. J Invest Dermatol. 2020;140(8):1504-1512. DOI:10.1016/j.jid.2020.02.026. PMID: 32229141.
Murphree DH, Puri P, Shamim H, et al. Deep Learning for Dermatologists: Part I Fundamental Concepts. J Am Acad Dermatol. 2022;87(6):1343-1351. DOI: 10.1016/j.jaad.2020.05.056. PMID: 32434009. PMCID: PMC7669702.
Liu Y, Jain A, Eng C, et al. A deep learning system for differential diagnosis of skin diseases. Nat Med. 2020;26(6):900-908. DOI:10.1038/s41591-020-0842-3. PMID: 32424212.
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115-118. DOI:10.1038/nature21056. PMID: 28117445. PMCID: PMC8382232.
Haenssle HA, Fink C, Schneiderbauer R, et al. Man against Machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8):1836-1842. DOI:10.1093/annonc/mdy166. PMID: 29846502.
Haenssle HA, Fink C, Toberer F, et al. Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions. Ann Oncol. 2020;31(1):137-143. DOI:10.1016/j.annonc.2019.10.013. PMID: 31912788.
Tschandl P, Rinner C, Apalla Z, et al. Human–computer collaboration for skin cancer recognition. Nat Med. 2020;26(8):1229-1234. DOI:10.1038/s41591-020-0942-0. PMID: 32572267.
Whited JD, Warshaw EM, Kapur K, et al. Clinical course outcomes for store and forward teledermatology versus conventional consultation: A randomized trial. J Telemed Telecare. 2013;19(4):197-204. DOI:10.1177/1357633X13487116. PMID: 23666440.
Mounessa JS, Chapman S, Braunberger T, et al. A systematic review of satisfaction with teledermatology. J Telemed Telecare. 2018;24(4):263-270. DOI:10.1177/1357633X17696587. PMID: 28350281.
Chuchu N, Dinnes J, Takwoingi Y, et al. Teledermatology for diagnosing skin cancer in adults. Cochrane Database Syst Rev. 2018;2018(12). DOI:10.1002/14651858.CD013193. PMID: 30521686; PMCID: PMC6517019.
Machleid F, Kaczmarczyk R, Johann D, et al. Perceptions of digital health education among European Medical Students: Mixed methods survey. J Med Internet Res. 2020;22(8):e19827. DOI:10.2196/19827. PMID: 32667899. PMCID: PMC7455864.
Machleid F, Kaczmarczyk R, Johann D, et al. Perceptions of Digital Health Education Among European Medical Students: Mixed Methods Survey. J Med Internet Res. 2020;22(8):e19827. DOI:10.2196/19827. PMID: 32667899. PMCID: PMC7455864.
Chuchu N, Takwoingi Y, Dinnes J, et al. Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma. Cochrane Database Syst Rev. 2018;2018(12). DOI:10.1002/14651858.CD013192. PMID: 30521685. PMCID: PMC6517294.
Chao E, Meenan CK, Ferris LK. Smartphone-Based Applications for Skin Monitoring and Melanoma Detection. Dermatol Clin. 2017;35(4):551-557. DOI:10.1016/j.det.2017.06.014. PMID: 28886812.
Freeman K, Dinnes J, Chuchu N, et al. Algorithm based smartphone apps to assess risk of skin cancer in adults: systematic review of diagnostic accuracy studies. BMJ. 2020;368:m127. DOI: 10.1136/bmj.m127. PMID: 32041693. PMCID: PMC7190019.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Josep Malvehy, Brigitte Dreno, Enric Barba, Thomas Dirschka, Emilio Fumero, Christian Greis , Girish Gupka, Francesco Lacarrubba , Giuseppe Micali , David Moreno, Giovanni Pellacani, Laura Sampietro , Alexander Stratigos, Susanna Puig
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Dermatology Practical & Conceptual applies a Creative Commons Attribution License (CCAL) to all works we publish (http://creativecommons.org/licenses/by-nc/4.0/). Authors retain the copyright for their published work.