Publication trends and hot topics in dysplastic nevus research: A 30-year bibliometric analysis

Publication trends and hot topics in dysplastic nevus research: A 30-year bibliometric analysis

Authors

  • Hazal İzol Özmen Department of Pathology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey

Keywords:

dysplastic nevus, melanoma, bibliometric analysis, cocitation analysis, CiteSpace

Abstract

Introduction: Dysplastic nevi are pigmented lesions that share clinical and histological features of both common nevi and melanoma. In recent years, there has been an increase in publications on dysplastic nevi. Bibliometric analysis is a method of evaluating trends in large number of publications and identifying popular topics.

Objectives: The objective of this study is to provide an overview of the landscape of publications related to dysplastic nevi, visualize trends and popular topics in the literature.

Methods: Scopus database was searched for the following terms in title, abstract or keywords: “dysplastic nevus” OR “dysplastic nevi”. Time span was set to 2002-2022. Document type was set to Article and Review. Data was obtained in RIS format from Scopus. Titles, authors, abstracts, institutions, countries, journals, references, and the citation information were recorded.

Results: A network of 53422 references cited by 1559 publications was established. 1303 were articles and 256 were reviews. The number of publications increased 1.5 times from 2002 to 2022. Most studies were published from the USA 641 (41.2%) with Italy 171 (10,9%) and Australia 119 (7,6%) following. Keyword burst analysis was performed and melanoma related keywords seem to be more dominant in the recent decade. Author and reference co-citation analysis of were also performed.

Conclusions: The amount of publications and citations generated about dysplastic nevi are increasing rapidly. This study demonstrates that there has been a shift in dysplastic nevi research in the last decade by focusing more on diagnostic methods and dysplastic nevi-melanoma relationship.

References

Calonje JE, Brenn T, Lazar AJ, Billings S. McKee’s Pathology of the Skin, 2 Volume Set E-Book. Elsevier Health Sciences; 2018:1234-1289.

Gardner JM. Survival guide to Dermatopathology. Innovative Pathology Press; 2020:106-109.

Barnhill RL. Current status of the dysplastic melanocytic nevus. J Cutan Pathol. 1991;18(3):147–159. DOI: 10.1111/j.1600-0560.1991.tb00147.x. PMID: 1918502.

Tucker MA, Halpern A, Holly EA, et al. Clinically recognized dysplastic nevi: a central risk factor for cutaneous melanoma. Jama. 1997;277(18):1439–1444. PMID: 9145715.

Chen C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Technol. 2006;57:359–77. DOI: 10.1002/asi.20317.

Van Eck N, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523–538. DOI: 10.1007/s11192-009-0146-3. PMID: 20585380. PMCID: PMC2883932.

Gandini S, Sera F, Cattaruzza et al. Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur J Cancer. 2005;41(1):28–44. DOI: 10.1016/j.ejca.2004.10.015 PMID: 15617989

Landi MT, Baccarelli A, Tarone et al. DNA repair, dysplastic nevi, and sunlight sensitivity in the development of cutaneous malignant melanoma. J Natl Cancer Inst. 2002;94(2):94–101. DOI: 10.1093/jnci/94.2.94. PMID: 11792747

Goldstein AM, Chan M, Harland et al; Melanoma Genetics Consortium (GenoMEL). High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res. 2006;66(20):9818–9828. DOI: 10.1158/0008-5472.CAN-06-0494 PMID: 17047042

Zuo L, Weger J, Yang Q et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet. 1996;12(1):97–99. DOI: 10.1038/ng0196-97. PMID: 8528263.

Tucker MA, Halpern A, Holly EA, et al. Clinically recognized dysplastic nevi: a central risk factor for cutaneous melanoma. JAMA. 1997;277(18):1439-1444. DOI: 10.1001/jama.1997.03540420035026.

Rhodes AR, Harrist TJ, Day CL, Mihm Jr MC, Fitzpatrick TB, Sober AJ. Dysplastic melanocytic nevi in histologic association with 234 primary cutaneous melanomas. J Am Acad Dermatol. 1983;9(4):563–754. DOI: 10.1016/s0190-9622(83)70171-4. PMID: 6630618.

Kluijt I, Cats A, Fockens P, Nio Y, Gouma DJ, Bruno MJ. Atypical familial presentation of FAMMM syndrome with a high incidence of pancreatic cancer: case finding of asymptomatic individuals by EUS surveillance. J Clin Gastroenterol. 2009;43(9):853–857. DOI: 10.1097/MCG.0b013e3181981123. PMID: 19417680.

Fraga-Braghiroli N, Grant-Kels JM, Oliviero M, Rabinovitz H, Ferenczi K, Scope A. The role of reflectance confocal microscopy in differentiating melanoma in situ from dysplastic nevi with severe atypia: A cross-sectional study. J Am Acad Dermatol. 2020;83(4):1035–1043. DOI: 10.1016/j.jaad.2020.05.071. PMID: 32442695.

Pellacani G, Farnetani F, Gonzalez S, et al. In vivo confocal microscopy for detection and grading of dysplastic nevi: a pilot study. J Am Acad Dermatol. 2012;66(3):e109–e121. DOI: 10.1016/j.jaad.2011.05.017. PMID: 21742408.

Liu L, Dilworth D, Gao L, et al. Mutation of the CDKN2A 5’UTR creates an aberrant initiation codon and predisposes to melanoma. Nat Genet. 1999;21(1):128–132. DOI: 10.1038/5082. 9916806. PMID: 9916806.

Harland M, Meloni R, Gruis N, et al. Germline mutations of the CDKN2 gene in UK melanoma families. Hum Mol Genet. 1997;6(12):2061–2067. DOI: 10.1093/hmg/6.12.2061. PMID: 9328469.

De Snoo FA, Hottenga J-J, Gillanders EM, et al. Genome-wide linkage scan for atypical nevi in p16-Leiden melanoma families. Eur J Hum Genet. 2008;16(9):1135–1141. DOI: 10.1038/ejhg.2008.72. PMID: 18398432.

Park W-S, Vortmeyer AO, Pack S, et al. Allelic deletion at chromosome 9p21 (p16) and 17p13 (p53) in microdissected sporadic dysplastic nevus. Hum Pathol. 1998;29(2):127–130. DOI: 10.1016/s0046-8177(98)90221-0. PMID: 9490270.

Lynch HT, Fusaro RM, Lynch JF, Brand R. Pancreatic cancer and the FAMMM syndrome. Fam Cancer. 2008;7(1):103–112. DOI: 10.1007/s10689-007-9166-4. PMID: 17992582.

Spaccarelli N, Drozdowski R, Peters MS, Grant-Kels JM. Dysplastic nevus part II: Dysplastic nevi: Molecular/genetic profiles and management. J Am Acad Dermatol. 2022;88(1):13–20. DOI: 10.1016/j.jaad.2022.05.071. PMID: 36252690.

Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weaknesses. FASEB J. 2008;22(2):338–342. DOI: 10.1096/fj.07-9492LSF. PMID: 17884971.

Mongeon P, Paul-Hus A. The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometric.s 2016;106:213–228. DOI: 10.1007/s11192-015-1765-5.

Chen C. Predictive effects of structural variation on citation counts. J Am Soc Inf Sci Technol. 2012;63:431–449. DOI: 10.1002/asi.21694.

Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: An overview and guidelines. J Bus Res. 2021;133:285–296. DOI: 10.1016/j.jbusres.2021.04.070.

Chen C. CiteSpace: a practical guide for mapping scientific literature. Hauppauge, NY, USA: Nova Science Publishers, 2016:41-44.

Downloads

Published

2023-10-31

Issue

Section

Review

How to Cite

1.
Publication trends and hot topics in dysplastic nevus research: A 30-year bibliometric analysis. Dermatol Pract Concept [Internet]. 2023 Oct. 31 [cited 2024 Sep. 10];13(4):e2023266. Available from: https://dpcj.org/index.php/dpc/article/view/3270

Share