Serum Endoglin and Endocan Levels in Rosacea and Their Association with Cardiovascular Risk Factors: A Case-Control Study
Keywords:
Endocan, endoglin, rosacea, inflammation, cardiovascular riskAbstract
Introduction: Rosacea, a chronic skin disease characterized by facial redness, is believed to involve inflammation and angiogenesis in its pathogenesis. Endocan and endoglin, biomarkers associated with vascular and inflammatory processes, might play roles in rosacea and cardiovascular comorbidities.
Objectives: This study aims to assess serum levels of endocan and endoglin in individuals with rosacea and the function of these biomarkers in indicating comorbidities associated with rosacea.
Methods: A total of 44 patients diagnosed with rosacea and 34 healthy controls were included in this case-control study. The endocan and endoglin levels in serum samples from both groups were measured.
Results: No significant differences in endocan and endoglin levels were observed between the patient and control groups. However, their levels were associated with various clinical features, including symptom and disease severity. A notable association was identified between waist circumference, body mass index and endoglin levels. However, this association was not evident for endocan.
Conclusions: This study suggests endocan and endoglin may play roles in rosacea pathogenesis, with endoglin potentially associated with increased cardiovascular risk.
References
Crawford GH, Pelle MT, James WD. Rosacea: I. Etiology, pathogenesis, and subtype classification. J Am Acad Dermatol. 2004;51(3):327-341. DOI:10.1016/j.jaad.2004.03.030. PMID:15337973.
Powell F. Rosacea: Diagnosis and Management. Boca Raton, FL: CRC Press; 2008.
McAleer MA, Fitzpatrick P, Powell FC. Papulopustular rosacea: prevalence and relationship to photodamage. J Am Acad Dermatol. 2010;63(1):33-39. DOI:10.1016/j.jaad.2009.04.024. PMID:20462665.
Spoendlin J, Voegel J, Jick S, et al. A study on the epidemiology of rosacea in the UK. Br J Dermatol. 2012;167(3):598-605. DOI:10.1111/j.1365-2133.2012.11018.x. PMID:22640409.
Emiral GO, Ozay O, Arslantas D, et al. Assessment of acne rosacea prevalence and quality of life between individuals aged 18 years and over in Mahmudiye district center, Eskisehir, Turkey (A population based study). Turk J Dermatol. 2020;14(2):48 54. DOI:10.4103/TJD.TJD_14_20.
Rainer BM, Fischer AH, Da Silva DLF, et al. Rosacea is associated with chronic systemic diseases in a skin severity–dependent manner: results of a case-control study. J Am Acad Dermatol. 2015;73(4):604-608. DOI:10.1016/j.jaad.2015.07.023. PMID:26308532
Wilkin J, Dahl M, Detmar M, et al. Standard classification of rosacea: report of the National Rosacea Society Expert Committee on the Classification and Staging of Rosacea. J Am Acad Dermatol. 2002;46(4):584-587. DOI:10.1067/mjd.2002.120152. PMID:11907501
Ghanadan A, Kamyab K, Azhari VS, et al. Clinicopathological survey of 204 rosacea patients regarding rosacea subgroups and severity. Dermatol Pract Concept. 2023;13(3):e2023182. DOI:10.5826/dpc.1303a182. PMID:37557115.
Kang S. Fitzpatrick’s Dermatology, 2 Volume Set. New York, NY: McGraw Hill; 2019.
Brown TT, Choi EY, Thomas DG, et al. Comparative analysis of rosacea and cutaneous lupus erythematosus: histopathologic features, T cell subsets, and plasmacytoid dendritic cells. J Am Acad Dermatol. 2014;71(1):100 107. DOI:10.1016/j.jaad.2014.01.892. PMID:24656728
Buhl T, Sulk M, Nowak P, et al. Molecular and morphological characterization of inflammatory infiltrate in rosacea reveals activation of Th1/Th17 pathways. J Invest Dermatol. 2015;135(9):2198 2208. DOI:10.1038/jid.2015.141. PMID:25848978
Gazzinelli RT, Denkers EY. Protozoan encounters with Toll like receptor signalling pathways: implications for host parasitism. Nat Rev Immunol. 2006;6(12):895–906. DOI:10.1038/nri1978. PMID:17110955
Yamasaki K, Kanada K, Macleod DT, et al. TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J Invest Dermatol. 2011;131(3):688–697. DOI:10.1038/jid.2010.351. PMID:21107351
Steinhoff M, Ständer S, Seeliger S, et al. Modern aspects of cutaneous neurogenic inflammation. Arch Dermatol. 2003;139(11):1479–1488. DOI:10.1001/archderm.139.11.1479. PMID:14557275
Segovia J, Sabbah A, Mgbemena V, et al. TLR2/MyD88/NF κB pathway, reactive oxygen species, potassium efflux activates NLRP3/ASC inflammasome during respiratory syncytial virus infection. PLoS One. 2012;7(1):e29695. DOI:10.1371/journal.pone.0029695. PMID:22295065
Meyer Hoffert U, Schröder JM. Epidermal proteases in the pathogenesis of rosacea. J Invest Dermatol Symp Proc. 2011;15(1):16–23. DOI:10.1038/jidsymp.2011.2. PMID:22076323
Steinstraesser L, Kraneburg U, Jacobsen F, et al. Host defense peptides and their antimicrobial immunomodulatory duality. Immunobiology. 2011;216(3):322–333. DOI:10.1016/j.imbio.2010.07.003. PMID:20828865
Liu PT, Stenger S, Li H, et al. Toll like receptor triggering of a vitamin D mediated human antimicrobial response. Science. 2006;311(5768):1770–1773. DOI:10.1126/science.1123933. PMID:16497887.
Yamasaki K, Di Nardo A, Bardan A, et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med. 2007;13(8):975–980. DOI:10.1038/nm1616. PMID:17676051
Jang Y, Sim J, Kang H, Kim Y, Lee ES. Immunohistochemical expression of matrix metalloproteinases in the granulomatous rosacea compared with the non granulomatous rosacea. J Eur Acad Dermatol Venereol. 2011;25(5):544–548. DOI:10.1111/j.1468 3083.2010.03824.x. PMID:20840577.
Schwab VD, Sulk M, Seeliger S, et al. Neurovascular and neuroimmune aspects in the pathophysiology of rosacea. J Invest Dermatol Symp Proc. 2011;15(1):53–62. DOI:10.1038/jidsymp.2011.9. PMID:22076329.
Casas C, Paul C, Lahfa M, et al. Quantification of Demodex folliculorum by PCR in rosacea and its relationship to skin innate immune activation. Exp Dermatol. 2012;21(12):906–910. DOI:10.1111/exd.12017. PMID:23157908.
Schoonderwoerd MJ, Goumans M JT, Hawinkels LJ. Endoglin: beyond the endothelium. Biomolecules. 2020;10(2):289. DOI:10.3390/biom10020289. PMID:32010848.
Gougos A, Letarte M. Identification of a human endothelial cell antigen with monoclonal antibody 44G4 produced against a pre B leukemic cell line. J Immunol. 1988;141(6):1925–1933. DOI:10.4049/jimmunol.141.6.1925. PMID:2450347.
Gougos A, Letarte M. Primary structure of endoglin, an RGD containing glycoprotein of human endothelial cells. J Biol Chem. 1990;265(15):8361–8364. PMID:2346718.
Bellón T, Corbi A, Lastres P, et al. Identification and expression of two forms of the human transforming growth factor β binding protein endoglin with distinct cytoplasmic regions. Eur J Immunol. 1993;23(9):2340–2345. DOI:10.1002/eji.1830230940. PMID:8403503.
McAllister KA, Grogg KM, Johnson DW, et al. Endoglin, a TGF β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet. 1994;8(4):345–351. DOI:10.1038/ng1294-345. PMID:7894484.
López Novoa JM, Bernabeu C. The physiological role of endoglin in the cardiovascular system. Am J Physiol Heart Circ Physiol. 2010;299(4):H959–H974. DOI:10.1152/ajpheart.00654.2010. PMID:20689056.
Sarrazin S, Adam E, Lyon M, et al. Endocan or endothelial cell specific molecule 1 (ESM 1): a potential novel endothelial cell marker and a new target for cancer therapy. Biochim Biophys Acta Rev Cancer. 2006;1765(1):25–37. DOI:10.1016/j.bbcan.2005.10.004. PMID:16359924.
Bechard D, Meignin V, Scherpereel A, et al. Characterization of the secreted form of endothelial cell specific molecule 1 by specific monoclonal antibodies. J Vasc Res. 2000;37(5):417–425. DOI:10.1159/000025788. PMID:11053977.
Bessa J, Albino Teixeira A, Reina Couto M, Sousa T. Endocan: a novel biomarker for risk stratification, prognosis and therapeutic monitoring in human cardiovascular and renal diseases. Clin Chim Acta. 2020;509:310–335. DOI:10.1016/j.cca.2020.06.012. PMID:32562648.
Aitkenhead M, Wang SJ, Nakatsu MN, et al. Identification of endothelial cell genes expressed in an in vitro model of angiogenesis: induction of ESM 1, βig h3, and NrCAM. Microvasc Res. 2002;63(2):159–171. DOI:10.1006/mvre.2001.2392. PMID:11846534.
Celik T, Balta S, Karaman M, et al. Endocan, a novel marker of endothelial dysfunction in patients with essential hypertension: comparative effects of amlodipine and valsartan. Blood Press. 2015;24(1):55–60. DOI:10.3109/08037051.2014.961363. PMID:25251992.
Gallo RL, Granstein RD, Kang S, et al. Standard classification and pathophysiology of rosacea: the 2017 update by the National Rosacea Society Expert Committee. J Am Acad Dermatol. 2018;78(1):148–155. DOI:10.1016/j.jaad.2017.08.037. PMID:29241751.
Wilkin J, Dahl M, Detmar M, et al. Standard grading system for rosacea: report of the National Rosacea Society Expert Committee on the classification and staging of rosacea. J Am Acad Dermatol. 2004;50(6):907–912. DOI:10.1016/j.jaad.2004.01.012. PMID:15153893.
Forton F. Standardized skin surface biopsy: method to estimate the Demodex folliculorum density, not to study the Demodex folliculorum prevalence. J Eur Acad Dermatol Venereol. 2007;21(9):1301–1302. DOI:10.1111/j.1468-3083.2007.02455.x. PMID:17894752.
Balta S, Mikhailidis DP, Demirkol S, et al. Endocan: a novel inflammatory indicator in cardiovascular disease? Atherosclerosis. 2015;243(1):339–343. DOI:10.1016/j.atherosclerosis.2015.09.030. PMID:26448266.
Abdou AG, Hammam M, Saad E, Hassan RAA. The significance of endocan immunohistochemical expression in chronic plaque psoriasis. J Cosmet Dermatol. 2021;20(7):2260–2266. DOI:10.1111/jocd.14086. PMID:33742537.
Tian H, Huang JJ, Golzio C, et al. Endoglin interacts with VEGFR2 to promote angiogenesis. FASEB J. 2018;32(6):2934–2949. DOI:10.1096/fj.201700909R. PMID:29622072.
Kılıc S, Mermutlu SI, Şehitoğlu H, et al. Elevated serum endocan levels in patients with rosacea: a new therapeutic target? Indian J Dermatol. 2021;66(5):520. DOI:10.4103/ijd.ijd_401_21. PMID:35068507.
Sánchez Elsner T, Botella LM, Velasco B, et al. Endoglin expression is regulated by transcriptional cooperation between the hypoxia and transforming growth factor β pathways. J Biol Chem. 2002;277(46):43799–43808. DOI:10.1074/jbc.M207160200. PMID:12228247
Furuya M, Nishiyama M, Kasuya Y, et al. Pathophysiology of tumor neovascularization. Vasc Health Risk Manag. 2005;1(4):277–290. DOI:10.2147/vhrm.2005.1.4.277. PMID:17315600.
Wladis EJ, Carlson JA, Wang MS, et al. Toll like receptors and vascular markers in ocular rosacea. Ophthalmic Plast Reconstr Surg. 2013;29(4):290–293. DOI:10.1097/IOP.0b013e3182947a14. PMID:23839635
Li Q, Lin F, Ke D, et al. Combination of endoglin and ASCVD risk assessment improves carotid subclinical atherosclerosis recognition. J Atheroscler Thromb. 2019;26(5):50898. DOI:10.5551/jat.50898. PMID:31406054
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Melodi Çekiç, Ayşın köktürk, Lülüfer Tamer, Rojda Tanrıverdi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Dermatology Practical & Conceptual applies a Creative Commons Attribution License (CCAL) to all works we publish (http://creativecommons.org/licenses/by-nc/4.0/). Authors retain the copyright for their published work.