Post translational Modifications and Protein-Protein Interactome of Endemic Pemphigus in El Bagre, Colombia: A New Variant Analysis
Keywords:
New variant of endemic pemphigus foliaceus in El Bagre, Interactome, Posttranslational Modifications PemphigusAbstract
Background: A new variant of endemic pemphigus foliaceus, El Bagre-EPF, is an orphan autoimmune disease occurring in El Bagre and neighboring municipalities in Colombia, South America.
Objectives: We aimed to evaluate current state-of-the-art databases and protein-protein interactomes, focusing on post-translational modifications as potential tools to study interactions among El Bagre-EPF antigen proteins.
Methods: We consulted multiple databases for the known target antigens and their protein-protein interactions. We searched for their network nodes (they represent proteins; each node corresponded to all the proteins produced by a single, protein-coding gene locus). We also searched for any post-translational modifications.
Results: We identified similarities in proteins bound by several autoantigens, but also found differences in protein linkages. We found that desmoglein, periplakin, desmoplakins and proteins from subfamilies of the Armadillo repeat proteins and some spectrin domains linked to other cell junctions; these played important roles in membrane-plaque and intermediate filament junctions. A typical drawback in current databases is the lack of information on lipid-protein interactions.
Conclusions: Our results show that state-of-the-art protein databases as tools for studies of interactomes fall short in areas including tertiary and quaternary protein interactions and in vivo protein functioning. Enhanced three-dimensional or multi-dimensional functions are required for more accurate interactome analyses.
References
Abreu-Velez AM, Yi H, Howard MS. Cell junction protein armadillo repeat gene deleted in velo-cardio-facial syndrome is expressed in the skin and colocalizes with autoantibodies of patients affected by a new variant of endemic pemphigus foliaceus in Colombia. Dermatol Pract Concept. 2017;7(4):3-8. DOI: 10.5826/dpc.0704a02. PMID: 29214101; PMCID: PMC5718118.
Paiano A, Margiotta A, De Luca M, et al. Yeast two-hybrid assay to identify interacting proteins. Curr Protoc Protein Sci. 2019;95(1):e70. DOI: 10.1002/cpps.70. PMID: 30133175.
Kim DK, Weller B, Lin CW, et al A proteome-scale map of the SARS-CoV-2-human contactome. Nat Biotechnol. 2023;41(1):140-149. DOI: 10.1038/s41587-022-01475-z. PMID: 36217029; PMCID: PMC9849141.
Skinnider MA, Scott NE, Prudova A, et al. An atlas of protein-protein interactions across mouse tissues. Cell. 2021;184(15):4073-4089.e17. DOI: 10.1016/j.cell.2021.06.003. PMID: 34214469.
UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023 6;51(D1):D523-D531. DOI: 10.1093/nar/gkac1052. PMID: 36408920; PMCID: PMC9825514.
https://www.uniprot.org/. (Consulted in July 2024).
https://www.rcsb.org/docs/general-help/identifiers-in-pdb. (Consulted in June 2024).
Kamburov A, Herwig R. ConsensusPathDB 2022: molecular interactions update as a resource for network biology. Nucleic Acids Res. 20227;50(D1): D587-D595. DOI: 10.1093/nar/gkab1128. PMID: 34850110; PMCID: PMC8728246.
http://cpdb.molgen.mpg.de. (Consulted in June 2024).
Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023:protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638-D646. DOI: 10.1093/nar/gkac1000. PMID: 36370105; PMCID: PMC9825434.
https://string-db.org/. (Consulted in June 2024).
Hornbeck PV, Zhang B, Murray B, et al. E PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43:D512-20.
https://www.phosphosite.org/homeAction.action. (Consulted in July 2024).
https://www.nlm.nih.gov/ (consulted in June 2024).
The neXtProt knowledgebase in 2020: data, tools and usability improvements. Nucleic Acids Res. 2020 Jan 8;48(D1):D328-D334. https://www.nextprot.org/ (consulted in June 2024).
Sharifi Tabar M, Parsania C, Chen H, et al. Illuminating the dark protein-protein interactome. Cell Rep Methods. 2022;2(8):100275. DOI: 10.1016/j.crmeth.2022.100275. PMID: 36046620; PMCID: PMC9421580.
Kjer-Hansen P, Weatheritt RJ. The function of alternative splicing in the proteome: rewiring protein interactomes to put old functions into new contexts. Nat Struct Mol Biol. 2023;30(12):1844-1856. DOI: 10.1038/s41594-023-01155-9. PMID: 38036695.
Yan Y, Huang T. The interactome of protein, DNA, and RNA. Methods Mol Biol. 2023;2695:89-110. DOI: 10.1007/978-1-0716-3346-5_6. PMID: 37450113.
Abreu-Velez AM, Upegui-Zapata YA, Valencia-Yepes CA, et al. Patterns of Antinuclear Antibodies in a New Variant of Endemic Pemphigus in El Bagre, Colombia, Colocalizing with Antigens against MIZAP, ARVCF, p0071, and Desmoplakins I and II. J Appl Lab Med. 2022;7(6):1366-1378. DOI: 10.1093/jalm/jfac050. PMID: 35899599.
Tusseau M, Khaldi-Plassart S, Cognard J, et al. Mendelian causes of autoimmunity: the lupus phenotype. J Clin Immunol. 2024;44(4):99. DOI: 10.1007/s10875-024-01696-8. PMID: 38619739.
Antonelli A, Ferrari SM, Ragusa F, et al. Graves' disease: Epidemiology, genetic and environmental risk factors and viruses. Best Pract Res Clin Endocrinol Metab. 2020;34(1):101387. DOI: 10.1016/j.beem.2020.101387. PMID: 32107168.
Kowalczyk AP, Stappenbeck TS, Parry DA, et al. Structure and function of desmosomal transmembrane core and plaque molecules. Biophys Chem. 1994;50(1-2):97-112. DOI: 10.1016/0301-4622(94)85023-2. PMID: 8011944.
Harrison OJ, Brasch J, Lasso G, et al. Structural basis of adhesive binding by desmocollins and desmogleins. Proc Natl Acad Sci U S A. 2016;113(26):7160-5. DOI: 10.1073/pnas.1606272113.. PMID: 27298358; PMCID: PMC4932976.
Kowalczyk AP, Borgwardt JE, Green KJ. Analysis of desmosomal cadherin-adhesive function and stoichiometry of desmosomal cadherin-plakoglobin complexes. J Invest Dermatol. 1996;107(3):293-300. DOI: 10.1111/1523-1747.ep12363000. PMID: 8751959.
Harmon RM, Simpson CL, Johnson JL, et al. Desmoglein-1/Erbin interaction suppresses Erk activation to support epidermal differentiation. J Clin Invest. 2013;123:1556–70.
Calkins CC, Hoepner BL, Law CM, et al. The Armadillo family protein p0071 is a VE-cadherin- and desmoplakin-binding protein. J Biol Chem. 2003;278(3):1774-83. DOI: 10.1074/jbc.M205693200. PMID: 12426320
Nahorski MS, Seabra L, Straatman-Iwanowska A, et al. Folliculin interacts with p0071 (plakophilin-4) and deficiency is associated with disordered RhoA signaling, epithelial polarization and cytokinesis. Hum Mol Genet. 2012;21(24):5268-79. DOI: 10.1093/hmg/dds378. PMID: 22965878; PMCID: PMC3755511.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ana Maria Abreu Velez, Mariana Ramirez-Posada, Michael S Howard

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Dermatology Practical & Conceptual applies a Creative Commons Attribution License (CCAL) to all works we publish (http://creativecommons.org/licenses/by-nc/4.0/). Authors retain the copyright for their published work.