Artificial Intelligence-Based Image Analysis is Insufficient as a Stand-Alone Assessment of Skin Tumors in Real Clinical Practice
Keywords:
Artificial Intelligence (AI), Skin tumors, Total body photography (TBP), Digital dermoscopy (DD), Diagnostic accuracyReferences
Tschandl P, Codella N, Akay BN, et al. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. Lancet Oncol. 2019; 20(7): 938-947. DOI:10.1016/S1470-2045(19)30333-X.
Tschandl P, Rinner C, Apalla Z, et al. Human-computer collaboration for skin cancer recognition. Nat Med. 2020; 26(8): 1229-1234. DOI: 10.1038/s41591-020-0942-0.
Haggenmüller S, Maron RC, Hekler A, et al. Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts. Eur J Cancer. 2021; 156: 202-216. DOI: 10.1016/j.ejca.2021.06.049.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Aimilios Lallas, Konstantinos Liopyris , Zoe Apalla, Elvira Moscarella, Gabriella Brancaccio, Alexander Stratigos, Giuseppe Argenziano

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Dermatology Practical & Conceptual applies a Creative Commons Attribution License (CCAL) to all works we publish (http://creativecommons.org/licenses/by-nc/4.0/). Authors retain the copyright for their published work.