GRWD1 Drives Melanoma Growth Through NF-κB Signaling Pathway
Keywords:
Melanoma, GRWD1, NF-κB, Tumor progression, Signaling pathwayAbstract
Introduction: Melanoma is an aggressive skin cancer with high metastatic potential. The oncogenic protein GRWD1 has been implicated in various cancer types, but its role in melanoma remains unclear.
Objectives: To examine the effects of GRWD1 knockdown on melanoma cell proliferation, apoptosis, and migration and to evaluate its prognostic significance in melanoma patients.
Methods: A combination of in vitro and clinical analyses was performed. A2058 melanoma cells were treated with GRWD1-specific siRNA, and cell proliferation, apoptosis, and migration assays were conducted. Western blotting was used to assess alterations in key oncogenic pathways. Additionally, clinical tissue samples from melanoma patients were analyzed for GRWD1 expression, and Kaplan-Meier survival analysis was performed to determine its prognostic value.
Results: GRWD1 was highly expressed in melanoma cells. GRWD1 knockdown significantly reduced cell proliferation (by 63%), impaired colony formation, and induced apoptosis (cleaved caspase-3 levels increased by 17.3%). Migration capacity decreased by 70%, and NF-κB pathway activity was suppressed, leading to reduced expression of Bcl-2, Src, and MDM2, while stabilizing p53. TCGA-based analyses revealed that high GRWD1 expression was significantly associated with shorter survival in metastatic melanoma cases (P=0.00029) but showed no correlation with melanoma subtypes. However, in immunohistochemical analysis of clinical samples, no statistically significant correlation was found between GRWD1 staining intensity and survival.
Conclusions: GRWD1 plays a crucial role in melanoma progression by enhancing NF-κB activity, promoting proliferation, and suppressing apoptosis. While high GRWD1 expression is associated with poor prognosis in public datasets, further clinical validation with larger patient cohorts is needed to confirm its utility as a prognostic biomarker and therapeutic target.
References
Linares MA, Zakaria A, Nizran P. Skin Cancer. Prim Care. 2015;42(4):645-59. DOI: 10.1016/j.pop.2015.07.006. PMID: 26612377.
Vaienti S, Calzari P, Nazzaro G. Topical Treatment of Melanoma In Situ, Lentigo Maligna, and Lentigo Maligna Melanoma with Imiquimod Cream: A Systematic Review of the Literature. Dermatol Ther (Heidelb). 2023;13(10):2187-2215. DOI: 10.1007/s13555-023-00993-1. Epub 2023 Aug 24. PMID: 37615838; PMCID: PMC10539275.
Gosman LM, Țăpoi DA, Costache M. Cutaneous Melanoma: A Review of Multifactorial Pathogenesis, Immunohistochemistry, and Emerging Biomarkers for Early Detection and Management. Int J Mol Sci. 2023;24(21):15881. DOI: 10.3390/ijms242115881. PMID: 37958863; PMCID: PMC10650804.
Rastrelli M, Tropea S, Rossi CR, Alaibac M. Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo. 2014;28(6):1005-11. PMID: 25398793.
Caini S, Gandini S, Sera F, et al. Meta-analysis of risk factors for cutaneous melanoma according to anatomical site and clinico-pathological variant. Eur J Cancer. 2009;45(17):3054-63. DOI: 10.1016/j.ejca.2009.05.009. Epub 2009 Jun 21. PMID: 19545997.
Zhang J, Tian H, Mao L, Si L. Treatment of acral and mucosal melanoma: Current and emerging targeted therapies. Crit Rev Oncol Hematol. 2024;193:104221. DOI: 10.1016/j.critrevonc.2023.104221. Epub 2023 Nov 29. PMID: 38036156.
Society AC. Survival rates for melanoma skin cancer, by stage. American Cancer Society Atlanta, GA; 2017.
Takafuji T, Kayama K, Sugimoto N, Fujita M. GRWD1, a new player among oncogenesis-related ribosomal/nucleolar proteins. Cell Cycle. 2017;16(15):1397-1403. DOI: 10.1080/15384101.2017.1338987. Epub 2017 Jul 19. PMID: 28722511; PMCID: PMC5553401.
Kayama K, Watanabe S, Takafuji T, et al. GRWD1 negatively regulates p53 via the RPL11-MDM2 pathway and promotes tumorigenesis. EMBO Rep. 2017;18(1):123-137. DOI: 10.15252/embr.201642444. Epub 2016 Nov 17. PMID: 27856536; PMCID: PMC5210153.
Fujiyama H, Tsuji T, Hironaka K, Yoshida K, Sugimoto N, Fujita M. GRWD1 directly interacts with p53 and negatively regulates p53 transcriptional activity. J Biochem. 2020;167(1):15-24. DOI: 10.1093/jb/mvz075. PMID: 31545368.
Özdem B, Yıldırım I, Kılınçlı Çetin A, Tekedereli İ. Cynarine Exhibits Antiproliferative Activity and Bcl-2-Mediated Apoptotic Cell Death in Breast Cancer Cells. Pharmaceutical Chemistry Journal. 2024:1-5. DOI:10.1007/s11094-024-03229-4.
Tekedereli I, Akar U, Alpay SN, Lopez-Berestein G, Ozpolat B. Autophagy is Required to Regulate Mitochondria Renewal, Cell Attachment, and All-trans-Retinoic Acid-Induced Differentiation in NB4 Acute Promyelocytic Leukemia Cells. J Environ Pathol Toxicol Oncol. 2019;38(1):13-20. DOI: 10.1615/JEnvironPatholToxicolOncol.2018027885. PMID: 30806286.
Wang Q, Ren H, Xu Y, et al. GRWD1 promotes cell proliferation and migration in non-small cell lung cancer by activating the Notch pathway. Exp Cell Res. 2020;387(2):111806. DOI: 10.1016/j.yexcr.2019.111806. Epub 2019 Dec 28. PMID: 31891681.
Yao L, Tian F. GRWD1 affects the proliferation, apoptosis, invasion and migration of triple negative breast cancer through the Notch signaling pathway. Exp Ther Med. 2022;24(1):473. DOI: 10.3892/etm.2022.11400. PMID: 35761807; PMCID: PMC9214606.
Ding H, Feng Z, Hu K. GRWD1 Over-Expression Promotes Gastric Cancer Progression by Activating Notch Signaling Pathway via Up-Regulation of ADAM17. Dig Dis Sci. 2024;69(3):821-834. DOI: 10.1007/s10620-023-08208-5. Epub 2024 Jan 3. PMID: 38172445.
Zhou X, Shang J, Liu X, et al. Clinical Significance and Oncogenic Activity of GRWD1 Overexpression in the Development of Colon Carcinoma. Onco Targets Ther. 2021;14:1565-1580. DOI: 10.2147/OTT.S290475. PMID: 33688204; PMCID: PMC7936717.
Watanabe S, Fujiyama H, Takafuji T, et al. GRWD1 regulates ribosomal protein L23 levels via the ubiquitin-proteasome system. J Cell Sci. 2018;131(15):jcs213009. DOI: 10.1242/jcs.213009. PMID: 29991511.
Wei S, Lu S, Liang L, et al. GRWD1-WDR5-MLL2 Epigenetic Complex Mediates H3K4me3 Mark and Is Essential for Kaposi's Sarcoma-Associated Herpesvirus-Induced Cellular Transformation. mBio. 2021;12(6):e0343121. DOI: 10.1128/mbio.03431-21. Epub 2021 Dec 21. PMID: 34933446; PMCID: PMC8689518.
Kayama K, Ooga A, Hasetsu K, Kokubo R, Sugimoto N, Fujita M. High GRWD1 expression may predict clinically aggressive lower grade glioma, skin cutaneous melanoma, and kidney renal clear cell carcinoma carrying wild-type p53: a systematic study based on TCGA data analysis. J Biochem. 2025;177(5):351-361. DOI: 10.1093/jb/mvaf004. PMID: 39812614.
Deng X, Li S, Kong F, Ruan H, Xu X, Zhang X, Wu Z, Zhang L, Xu Y, Yuan H, Peng H, Yang D, Guan M. Long noncoding RNA PiHL regulates p53 protein stability through GRWD1/RPL11/MDM2 axis in colorectal cancer. Theranostics. 2020;10(1):265-280. DOI: 10.7150/thno.36045. PMID: 31903119; PMCID: PMC6929633.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Dursun Turkmen, Rafet Ozbey, Berna Ozdem, Saadet Alan, Ayten Kilincli Cetin , Fatma Bengisu Baran , Berat Dogan , Nihal Altunisik, Zekiye Kanat , Serpil Sener, Ibrahim Tekedereli

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Dermatology Practical & Conceptual applies a Creative Commons Attribution License (CCAL) to all works we publish (http://creativecommons.org/licenses/by-nc/4.0/). Authors retain the copyright for their published work.